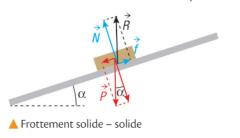
Travaux pratiques : Détermination d'un coefficient de frottement statique


Doc. 1 Frottement lors d'un mouvement sur un plan incliné

Le support exerce sur le solide une force de contact $\vec{R} = \vec{N} + \vec{f}$ où \vec{N} est la réaction normale du support et \vec{f} est la force de frottement solide.

Lorsque le solide est à la limite de l'équilibre, la force de frottement est donnée par :

 $f = \mu_s \times N$

où μ_s est le coefficient de frottement statique.

Doc. 3 Calcul de l'incertitude-type

Pour calculer l'incertitude-type des mesures, on utilise un tableur.

	nesures		
Mesure N°	α _{limite}	μ	
1			
2			
3			
4			
5			
6			
7		_	
8			

Pour un nombre ${\bf n}$ de mesures d'une même grandeur $M:\mu_{S,1},\,\mu_{S,2},\,\ldots,\,\mu_{S,n}$

- la **moyenne** de ces mesures notée \overline{m} , tel que : $\overline{\mu_S} = \frac{\sum_{i=1}^n \mu_{S,i}}{n}$
- L'incertitude de mesure, u(M) est évaluée grâce à l'incertitude type : $u(\mu_S) = \frac{1}{\sqrt{n}} \times \sigma_{n-1}$

 $\text{avec } \sigma_{n-1} \text{ l'écart-type calculé } \sigma_{n-1} = \sqrt{\frac{\sum_{i=1}^n (\mu_{S,i} - \overline{\mu_S})^2}{n-1}} \text{ ou déterminé par le logiciel ou la calculatrice}.$

Sous Excel, on utilise la fonction ECARTYPE.STANDARD Sur la calculatrice, on prend σ_x ou S_x

1/ A l'équilibre, que peut-on dire des forces qui s'appliquent au solide?

2/ D'après la relation précédente, exprimer une relation entre N et P.cosα et une relation entre f et P.sinα

3/ Montrer que $\mu_S = tan(\alpha_{limite})$

4/ A l'aide d'un tableur, déterminer la valeur moyenne $\overline{\mu_S}$ du coefficient de frottement statique avec le support en matière plastique.

Mesure N°	αlimite	μs
1		
2		
3		
4		
5		
6		
7		
8		

5/ En déduire l'écart type expérimental $u(\mu_S)$ et écrire le résultats sous la forme : $\mu_S = (\overline{\mu_S} \pm u(\mu_S))$.

6/ Reprendre la question 4/ et 5/ avec une mesure unique pour le support métallique et le support en mousse.

Mesure N°	αlimite	μs
1		
2		
3		
4		
5		
6		
7		
8		

Mesure N°	αlimite	μs
1		
2		
3		
4		
5		
6		
7		
8		

Conclusion:

Matière	Plastique	Métal	Mousse
Coefficient de frottement statique $\mu_S = (\overline{\mu_S} \pm u(\mu_S))$			