
Travaux pratiques: Rapport de transformation d'un transformateur

Document N°1/ Le transformateur

Un transformateur est une machine statique, constituée d'un circuit magnétique fermé sur lequel sont emboîtés deux enroulements électriquement indépendants : le primaire et le secondaire.

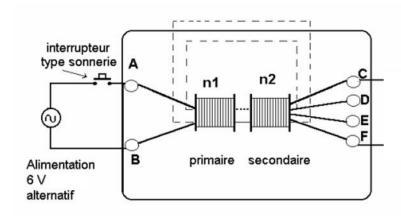
Le rapport de transformation (noté m) d'un transformateur est le rapport entre la valeur efficace de la tension du secondaire U_2 et celle du primaire U_1 .

Pour un transformateur parfait, les pertes énergétiques sont supposées nulles. Il y a alors conservation des puissance en entrée et en sortie du transformateur.

Document N°2/ Caractéristiques techniques du transformateur

Primaire : entrée sur 2 douilles de sécurité jaunes N_1 = 630 tours, fil Cu Ø 45/100.

Secondaire : 3 sorties sur douilles de sécurité de couleurs différentes :


- jaune $N_2 = 158$ spires;
- vert $N_2 = 315$ spires;
- rouge $N_2 = 630$ spires;

fil Cu ø 31,5/100.

Dimensions:

- Boîtier: 135 x 90 x 60 mm
- Circuit magnétique : Long. = 85 mm, larg. = 70 mm, section carrée 15 x 15 mm.

1/ Etude du transformateur « à vide »

- Alimenter le transformateur avec un générateur alternatif réglé sur 6,0 V.
- Mesurer la tension efficace en entrée et en sortie du transformateur à l'aide des voltmètres (attention, voltmètre en mode AC) en faisant varier le nombre de spires en sortie.

Nombre de spires en entrée	Nombre de spires en sortie	Tension efficace en entrée U _{eff,1} (en V)	Tension efficace en sortie U _{eff,2} (en V)	Rapport U _{eff,2} /U _{eff,1}	Rapport N₂/N₁
630	158				
630	315				
630	630				

rapport N₂/N₁ Comparer les deux rapports calculés dans le tableau. Conclure.

Compléter les deux dernières colonnes du tableau en calculant le rapport U_{eff,2}/U_{eff,1} ainsi que le

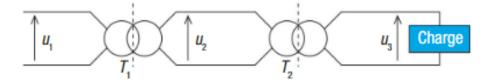

• Réaliser le même montage mais en utilisant les multimètres comme ampèremètres afin de déterminer les intensités efficaces en entrée et en sortie.

Nombre de spires en entrée	Nombre de spires en sortie	Intensité efficace en entrée l _{eff,1} (en A)	Intensité efficace en sortie I _{eff,2} (en A)	Rapport I _{eff,1} /I _{eff,2}	Rapport N ₂ /N ₁
630	158				
630	315				
630	630				

•	Comparer les deux rapports calculés dans le tableau. Conclure.

2/ Réversibilité d'un transformateur

• Alimenter maintenant la deuxième bobine avec le générateur 6 V alternatif.



• Mesurer la tension aux bornes des deux bobines et compléter le tableau ci-dessous :

Nombre de spires en entrée	Nombre de spires en sortie	Tension efficace en entrée U _{eff,1} (en V)	Tension efficace en sortie U _{eff,2} (en V)	Rapport U _{eff,2} /U _{eff,1}	Rapport N ₂ /N ₁

3/ Exemple d'application

On symbolise la chaine de distribution électrique par le schéma suivant :

Les tensions efficaces sont de :

- 10 kV au primaire de T₁;
- 400 kV au secondaire de T₁;
- 230 kV au secondaire de T₂.

1/ Attribuer le bon qualificatif à la bonne partie : distribution, production, transport
2/ Déterminer les rapports de transformation m ₁ et m ₂ des deux transformateurs T ₁ et T ₂ .
3/ On alimente une charge résistive de puissance de 2600W. Rappeler la valeur du facteur de puissance d'une charge résistive.

Travaux Pratiques // Chapitre N°15 : Transport et distribution de l'énergie électrique
4/ Déterminer l'intensité efficace du courant circulant dans le câble d'alimentation de la charge.
5 / En déduire l'intensité efficace du courant circulant dans les câbles entre les éléments T₁ et T₂.
6 / La charge est à présent un moteur dont la puissance apparente S est 2 600 W et de facteur de puissance k = 0,8. Déterminer la puissance active P consommée par le moteur.
7/ En déduire l'intensité efficace du courant circulant dans le câble d'alimentation de la charge.
8 / En déduire le courant circulant dans les câbles entre les éléments T ₁ et T ₂ .
9/ Par comparaison des résultats aux questions 5/ et 8/, compléter la phrase suivante :

[«] Plus le facteur de puissance de la charge est faible, plus les pertes dans les lignes d'alimentation sont grandes / petites .»